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Several elementary aspects of mass diffusion, heat
transfer and fluid flow are considered in the context
of the separation and control of mixtures of liquid
metals and semiconductors by crystallization and
float-zone refining. First, the effect of convection
on mass transfer in several coanfigurations is con-
sidered from the viewpoint of film theory. Then a
nonlinear, simplified, model of a low Praadtl number
floating zone in microgravity is discussed. It is
shown that the nonlinear inertia terms of the momentum
equations play an important role in determining
surface deflection in thermocapillary flow, and that
the deflection is small in the case considered, but it
is intimately related to the pressure distribution
which may exist in the zone. However, thermocapillary
flows may be vigorous and can affect temperature and
solute distributions profoundly in zone refining, and
thus they affect the quality of the crystals

produced.

The basic idea of zone refining is that a liquid region or zone
created by melting a small fraction of the material in a relati:
long solid charge, ingot or feed stock. By moving this liquid
through the charge in one direction the solid phase can be puri:
as the forward surface is melting and the rear one solidifies.
This is referred to as zone refining. If the liquid zone is pa
through the charge in both the forward and reverse directions,
uniform distribution of impurities may be obtained. This is zo
leveling.

Pfann (1) first described the essential features of zone
refining and pointed out its potential as a separation techniqu
In the early 1950's it was used to provide high purity silicon’
germanium for semiconductor applications. Since then it has be
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used in a variety of applications. The real power of zone refining
is that one can pass a molten zone through a solid phase numerous
times without difficulty. Up to a limit each pass increases the
purity of the solid phase by decreasing the concentration of the
solute. It is by means of multipass operation that great purity can
be achieved in the solid phase.

Zone refining is a dynamic nonequilibrium separation process.
However, to understand its essential features it is important to
understand the equilibrium concepts on which it is based. Of
central importance is the notion of the equilibrium distribution
coefficient, k, = Cg/Cy, where Cg and Cy, are the concentratlons of
solute at equilibrium in the solid and liquid phases respectively.
Since the value of ko, may be dramatically different from unity, it
is clear that at equilibrium a solute may distribute itself between
solid and liquid phases with a great preference for one or the other
at a given temperature. On this basis the relative amount of solute
in each phase can be coatrolled, and a separation can be carried
out.

Phase diagrams, which describe the equilibrium relations that
exist between phases in mixtures, are often very complex as ls the
case with the nickel-aluminum diagram for example. However, if one
restricts attention only to a relatively narrow range of concen-—
tration and, in particular, to dilute solutions, then one can
simplify this description of these relationships markedly by using
straight line approximations as shown in Figures 1(a, b).

Figures 1(a, b) represent phase relationships for cases in
which solid solutions exist, a common occurrence in metallic and
semiconductor systems. In such cases golidification does not cause
complete separation and the degree of separation depends not only on
the equilibrium relationships represented by Figures 1(a, b) but
also on the coavective-diffusive characteristics of the system. If
the addition of solute lowers the melting point as in Figure la,
then ky < 1; on the other hand if the melting point is raised by
adding solute, ko, > 1 as in Figure 1b.

A solute distribution exists in the melt because the solidifi-
cation is carried out at a finite rate. For example, if ko < 1,
then solute is rejected and accumulates at the surface which is
solidifying, and this creates solute gradients in the melt which
tend to be relaxed by molecular diffusion and any convection which
may exist. The interfacial distribution coefficient, k, refers to
the solid to liquid solute concentration ratio at the interface. It
is k which is used in transport calculations when one is trying to
understand the dynamic behavior of zome refining systems. It usu—
ally is found that equilibrium exists locally at the solid-liquid
interface, in which case k = kq.

The concentration, Cj,, of solute in the liquid in the neighbor-
hood of the solid-liquid interface is stroagly influenced by k which
thereby affects the concentration in the solid phase after solidifi-
cation in at least two ways. First, the smaller k is the faster
solute will accumulate on the liquid side of the interface. Second,

4, GILLETAL.
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Figure 1. Possible solid-liquid phase diagrams.
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it is the value of Cy(0) which determines Cg at the interface for
a given value of k. With no convection in the melt, it will be
shown that the maximum interfacial concentration is approached as
the process progresses and is, nrﬁov = nrAnw\w. where C, (=) is the
concentration of solute in the solution outside the diffusion
boundary layer. orﬁov climbs from nraaé to the orAao\w asymptote.

The material to be purified often is very reactive, and it is
difficult to find container materials which it will not attack. 1In
such cases floating-zone melting is attractive and is used for
example to grow oxygen free silicon crystals. 1In this case the
molten zone 1s held in place by its own surface tension which works
against the action of gravity. A molten zone can be established
between two rods, one a polyecrystalline charge or feed rod and the
other a crystalline rod of purified material which is either the
product of the separation or may serve as the feed for another pass.
The molten zone may be created in several ways including radio-
frequency induction heating as is used for silicon or electron beam
heating which is favored for refractory materials.

The gravitational field limits the length of the molten zone
that can be sustained by surface tension forces, and this also
limits the crystal diameter. The possibility of reducing these
constraints by decreasing significantly the intensity of the
gravitational field has generated considerable interest in
performing floating zone experiments in an orbit around the Earth.

Heating from an external source creates rather large tempera-
ture gradients along the surface of the floating zone which give
rise to strong thermo-capillary convective flow which mixes the
melt. Furthermore this flow may couple with natural convection
flows driven by the gravitational field. These flows give rise to
time-dependent behavior which is of considerable theoretical and
practical interest because it creates growth striations in semi-
conductor crystals which affect their performance, and because its
origin, and the parameters which characterize it, are not well
understood.

A detailed review of zone melting and its applications has been
glven recently by Shaw (2). 1In the present paper we shall confine
our attention primarily to the convective~diffusive characteristics
of such systems, and we shall strive primarily to obtain a sound
qualitative understanding of their behavior.

The flow phenomena involved in zone refining will be discussed
briefly. 1In particular we shall consider surface tension driven
flow in a cavity containing a low Prandtl number, Pr, fluid (a low
Pr number is typical of liquid metals and semiconductors). It will
be shown that simplified models of such flow, which simulate the
melt configuration in zone refining, predict multiple steady-state
solutions to the Navier-Stokes equations exist over a certain range
of the characteristic parameter.

The Equations of Motion, Energy and Diffusion for Molten Zones

In actual zone refining operations one may encounter three-
dimensional simultaneous heat and mass transfer with moving inter-
faces, and the system also may be time dependent. The mode of
heating affects system behavior significantly, as does radiation,
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when materials with high melting points are involved. All of the
factors complicate the analysis of the diffusional aspects of thi
separation process. Therefore we shall treat some rather simplif
verslons of real systems in an effort to galn some insight into
several of the important phenomena which occur.

First, we shall assume the system is two-dimensional and tha
the physical properties, except surface tension and density (in t
body force term of the momentum equations) are constant. With th
assumptions the coatinuity equation, momentum equations, energy
equations and the diffusion equation are given by

u v
—_—t—=0 1)
ax 9y
2 2
u u au 1 3P du du o]
+u + v = - + uf + ]+ g (2)
a ax 3y p 3% ax2 ay 2 by
2 2
v v v 1 &P 3 v Iv 5}
+u + v = - + uf: + ]+ g, (3
3 ax Y Po,3Y w2 g2 Py
2 2
ar ar ar 3T 3T
+_..— + Vv == Q.“.. + w AN«V
3t x 3y ax 2 ay 2
2 2
x x x L AC 3c
+ + v =
e y  Dlmz T 2 ] )

The boundary conditions for Equations 1-5 depend on the mode
heating and the way the separation 1s conducted. To gain some
insight into how the separation occurs at the 80l1id-liquid interf:
we first consider Equation 5. We shall assume that the melt is
quiescent so that the process is governed entirely by diffusion an
u and v are zero. If there is no convection in the melt and
directional solidification is occurring only in the x-direction,
then Equation 5 becomes

2
aC acC

=D
L )

at

Let us now assume, as is customary, that the charge is being moved
through the heater at a constant velocity U, and that this causes
the solid-liquid interface to move at the velocity U. Then it is

nm:<m:mm=n to use a coordinate X which moves with the interface su
that

X =x~-Ut (7N
and Equation 6 becomes
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2
o ¢ 3 C c(0) 1 UH.
——U— = Uhll| 3 = t <K — (13)
at " 2 c, 1-0® tu 2/, u?
w At time t = O the solute concentration in the charge was Co ‘
: Since diffusion in the liquid phase is slow, we can assume the dif- and
1 fusion layer near the interface is thin compared to the length of
: the melt; and therefore c(t,®) = Cy. Now we must consider the ) c(0) 1 cﬁ )
boundary condition at the interface. To do this we equate the = — O — a4
fluxes in the solid and liquid phases at X = 0 and remember that oo Kk v2
with respect to X there is an apparent convective velocity equal to E
quations 13 and 14 provide a qualitative picture of the relation-
-U. Furthermore, Dy, »> Dg so that solid phase diffusion can be ship between the concentration at the solid-liquid interface and
that in the bulk of the melt.

neglected. Therefore

w x (1-k) U We see from Equations 10-14 that two time regimes exist in the
- —(t,0) = c(t,0) 9) problem. The first period is a transient period which exists at
X > D ’ t << D,/u2. The second period is a steady state one which occurs
L when t >> ur\CN. Since Dy, is a physical property which cannot

be manipulated, we see that the greater the velocity of solid-liqui
jnterface the more quickly a steady state is reached in the system.
This conclusion is of practical importance because one often wishe:
to distribute the solute throughout the solid with a constant

i concentration.

cg(e,0
. where k =

._ ¢ (£,0)
: diagram with straight lines shown in Figure 1, k is constant and

this makes it much easier to solve the problem posed in Equation 8
and 9 together with the other initial and boundary conditions.

. If we assume k = k/ and use the idealized phase

Exact One-Dimensional Solutions of Diffusion Equation

Order of Magnitude Considerations

In the steady state /3t = 0, and Equations 8 and 9 can be solved

tain infor-
There are various ways of using Equations 8 and 9 to obtain into casily to give

mation about the solidification process. The simplest one is to do
an order of magnitude analyses, OMA, of these equations. This

ylelds immediately that on a relative basis the first, second and cjc =1+ 1-k ox m| Ux u as)
third terms are of order 1/t, U/ 8§ and Ur\aw. where & is the approxi- L% . P Imll
mate thickness of the diffusion boundary layer. Equating the first L
and last terms gives which gives the steady state solution for the interfacial concen-
: tration as
§ ~ D t (10)
orﬁov 1
and the second and last terms give - a6’
c k
§ ~D /U an °
L Equation 16 shows clearly that the solid phase steady concentratic
A similar OMA of Equation 9 yields is Cy,, the initial melt concentration. It is interesting to note
that Equations 14 and 16 are identical.
c(0) 1 The solution of Equation 8, if one includes the unsteady sta
= (12) effect 1s more complex, and was apparently first shown by Smith e
c 1 - (1-k) U8 al. (3) to be,
o D
L -Ux
1f one combines Equations 10, 11 and 12, one gets or 1 X+Ut rbr Ur X-Ut
. =1- M;mnmn + e erfc
. Co 2 ‘urn hD,; -U . 2 \drn
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U-2hD -hx + ht(hD, -U) X+ (U-2hD, jt
4 ——=L_ e L erfc ﬁ ru * Qa7n)
2 (u-hp, ) 2 AT

where h = (1-k)U/Dy.

Equation 17, evaluated at X = 0, together with the definition
of k, and setting t = x/U, enables omne to calculate the solid phase
distribution as

om 1 Ux Ux Ux
= - Sl + erfqf— + (2k-1) exp [-k(1-k)—] erfe [(2k-1)4/—]} (18)

GO bcﬁ_ D b,_uﬁ

where x is the distance from the point at which the first solid was
frozen.

Effect of Convection on Segregation

The preceding discussion assumes that no convection exists in the
melt, and this is rarely, if ever, the case. Next we shall consider
two approaches which account for convection in the melt, a tramsport
mechanism which is especially important in mass transfer because
Dy, 1s small and even weak convection markedly alters solute concen-
tration profiles and may cause macrosegregation. First we shall
discuss film theory which is a very simple approach that gives
qualitative information and often provides considerable physical
insight into the mechanisms involved. Second, we shall discuss a
simplified model of zone refining.

In film theory one assumes that the concentration changes near
the interface occur in a very thin region of thickness 8. 1In this
region the differential equation which describes the conceantration

is given by the steady state mwm = ov form of Equation 8. The

magnitude of § is determined by the convection which exists in the
system. One estimates § by solving simplified convection problems
such as natural or forced convection along a flat surface, or two or
three-dimensional stagnation flow, etc. From these simple cases one
calculates the mass transfer coefficient, kg, and § is defined as
§ = D/ky. In essence, one neglects all convection when calculating
C in the stagnant film, and includes all convective effects in its
thickness, 6. The stronger the convection the smaller is 6.
The steady-state solution satisfying Equations 8 and 9 and
C=C,at X =481s
|m|x
¢ k+ (1k)e L
— = 5 19
- WIm

o k+ (1-k)e L

C

Therefore, one obtains the well known Burton-Prim-Slichter 4)
equation -
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O
~

S . (20
c, - wla
k+ (1-k)e "L

and the problem is reduced to choosing an expression for & which
represents a realistic estimate of the convective patterns which
exist in the melt. Let us use a few relevant examples to illustr
how film theory may be applied to zone refining.

By definition, the mass transfer coefficient is given by

aﬁoa%u
= -p. — = Lk -
3= — 2 (€0 - C )
where y is the distance parallel to the surface and x is normal t
it. Therefore the definition of 6§ is,

U -
e, S9 7% 7
k. _ X (0,y) sh
m = y
k y
where m:% is the Sherwood number defined by lml.mna WWAo.wv is
L

calculated from a problem similar to the one to which we are
applying film theory, but one that can be analyzed more easily.

example, to calculate WWAo.wv. one would not include the moving

boundary because that is included in the film model, the steady
state form of Equation 8. One might also use a constant concen
tration or constant gradient boundary condition at the interface
rather than Equation 9 which also is included in the film model.

Suppose natural convection is the dominant convection mode i
the melt. If a natural convection boundary layer created by con:
tration gradients exists, then its behavior depends on whether t!
interface is vertical or horizontal to the earth. If it is verti
cal, one can show that,

, , 1o
- 1/4 Bg Ly
S y " 0.54 wm% = O.ubﬁlﬂ v (21

L
may be a reasonable approximation, Kays and Crawford (5), and
1/4
v cr y
— L7 @
Bg AC

If it is horizontal, Stewartson (6) and Gill et al. (7) showed ti
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1/5
msw = 0.75 wm< (23)
may apply if the interface faces upward and the density of the fluid

adjacent to it increases with distance from the interface; or if it
faces downward and the density relationship is reversed. In this
case

vD, y 1/5
5 umhlw;lu (24)
fg Ac

The important point made by Equations 20, 22 and 24 is that §
is a function of y, the distance parallel to the interface, and this
leads to segregation in the y direction (a nonuniformity of solute
concentration) in the solid phase as given in Equation 20.

It is most desirable for § to be constant, and there are ways
to make this happen. If the solid-liquid interface is circular,
which is most often the case because the charge is a rod, then § can
be controlled by rotating the rod so that the interface behaves as a
rotating disk with angular velocity w. This configuration is widely
used in analytical and electrochemistry because § is essentially
constant if this mechanism countrols. Levich (8) has shown that for
a rotating disk

p. 1/3
§=1.61(-) Vo (25)

v

Equation 25 shows that & is constant and its magnitude can be
controlled by changing w.

Natural convection to blunt bodies such as cylinders (2-
dimensional) and spheres (3-dimensional) has been studied by Acrivos
(9) and from his analysis one can show that these configurations are
characterized by constant boundary-layer thicknesses. For 2-
dimensional bodies,

1/4
1 R v cr
§= — (—&) (26)
0.54 Bg AC
and for 3~dimensional ones,
/4
1 R v Ur
6= 75 ( ) (27)
0.54(2) Bg AC

where R is the radius of curvature of the surface. Note that
Equation 26 is identical to 22 except that the length scale is R
which is a constant, and thus § is a constant. This implies that
the interfacial concentration of solute is uniform across the
stagnation region. These results may apply to an interface which
faces downward (in the direction of the gravity vector) imto a fluid
whose density increases with distance from the interface or one
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which faces upward into a fluid of decreasing density with distance
from the interface.

When strong temperature gradients exist, natural convection ma
be primarily induced thermally or both heat and mass transfer may
play comparable roles. In these cases the situation is more
complex, because the number of parameters increases. In liquid
metals and semiconductors. the Schmidt number, v/Df, is several
orders of magnitude greater than the Prandtl number, v/a, and this
enables one to solve for the concentration profile in a rather
general way without great difficulty as will be discussed next.

The number of alternative configurations of the melt and modes
of heating it that may exist in zone refining is very large. There
fore it seems desirable to have a method which enables one to esti-
mate macrosegregation under a wide variety of flow conditions. Suc
an approach 1s not available now, but some progress toward it can b
made by noting that liquid phase diffusion is characterized by a
large Schmidt number, which implies that diffusion boundary layers
are thin compared to momentum boundary layers. It seems that
Lighthill (10) was the first to suggest that one can restrict
attention to the velocity field near the interface under these con-
ditions, and by doing this one can derive the expression

1/3 ~1/2_ Y 172 1/3

ano.mﬁ@cr& T, :oas dy ] (28)

Equation 28 is a general result for high Sc, two-dimensional flows
in which the diffusion boundary layer thickness is zero at y = O.
It includes Equations 22 and 24 as special cases, but it does not
apply to systems in which 8§ #0 at y = 0, such as stagnation
regions, and also it does not include Equation 25. Equation 28 can
be applied to flows which are driven by temperature differences
regardless of the magnitude of the Prandtl number.

To use Equation 28 for thermally driven free convection

boundary layers one simply calculates =~y u(0,y) from known
ﬁm JMM

solutions. Then this result is inserted in Equation 28 and § in
Equation 19 or 20.

Unfortunately, because of the variety of factors, such as
shape, mode of heating and orientation, that is possible in melts,
and the complexity of the flow patterns which may exist, it is
extremely difficult to offer general rules, a priori, on how to
estimate §. One needs to examine each particular case carefully to
obtain even a qualitative understanding of the macrosegregation tha
may occur in the crystals being produced. However, one procedure
which seems to yield generally beneficial results is crystal rota-
tion as predicted by Equation 25.

Simplified Model of Surface Tension Driven Flow in a Two-dimensions
Molten Zone Supported on the Bottom

The preceding discussion showed that steady-state natural convectio
often leads to undesirable macrosegregation. It also has been show
by Gill AWWV that natural convection flows may become unstable, and
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Carruthers (12) and Milson and Pamplin (13) have discussed the
implications of the resulting oscillations on crystal growth. In
this section we shall examine exact solutions of the Navier-Stokes
equations for a two-dimensional simplified model of a molten zone
which is in the form of a cavity or slot of liquid of depth 4,
supported on the bottom, but with a free surface on top. The zone
is heated over the length, -2 < x < & by a flux, q, and cooled on
its ends at x = #L, where L » 4. We shall study the core region
inside -2 < x < £ for which a similarity solution exists. Thus we
are neglecting end-effects.

One can show that Equation 4 1s satisfied by a temperature
distribution in the form

T- Hoowa x 2
or——, - allrs06) 29)
hot cold %
where 8, and g, are functions which are determined from
2
g'' +2a%Ma f g' = -24 g (29a)
1 1 2
and
g+ N>wz..w_”m g'-2 ' g gn 0 (29b)
2 2 2
with the initial conditions (See Appendix I)
1 ]
g (0) =g (0) =0 (29¢)
1 2
SV =-g (0) =1 Qw&
2

and n = y/d. Here f(n) maa £f'(n) are functions related to u and v
#hich will be determined later; Ma is the Marangoni number

AT 2]d o/dT| d

. 3 and A 1s the aspect ratio M. In the limit Pr » 0, the
v

solution given by solving Equations 29 implies a constant heat flux
along the bottom of the cavity, n =1, and a zero heat flux from the
free surface, n = 0, into the vacuum surrounding the liquid zone.
For non-zero Pr the flux at n = 1 varies with x. Obviously Equation
29 implies that the liquid surface nmswmmmncﬂm varies as
x 2
T(x,0) = T, - (r,-1.) ﬁv =T, - EH (29e)

where T, is the temperature at x = 0 and To is that at x = 4,

Gill et al. (14) have shown by numerical computation that Equation
29e 1s a good approximation to a constant heat flux for fluids with
finite values of Pr which are typical of liquid metals. The follow-
ing discussion applies to all Pr fluids, but low Pr is the category
that includes essentially all fluids of interest in semiconductor
technology as well as all liquid metals. On the other hand, the
most complete data on thermocapillary flows in molten zones has been
reported by Preisser, Scharmann and Schwabe (15) and Schwabe and
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mnrmnawznAWWVmon zmzou o
heating from the side which is not consistent with the present
theory.

Levich (8) has discussed capillary motion in two-dimensic
creeping flows in which the surface was flat. Yih (17) pointe
inconsistencies in Levich's analysis which were associated wit
assumptions of a linear distribution of surface tension with
distance along the interface, and with the deflection of the s
which inevitably occurs when capillary flow exists. He noted
under certain circumstances steady flows may not exist. Ostre
(18, 19) has discussed scaling problems in capillary flows.
Recently, Sen and Davis (20) studied capillary flow in bounded
ties in which d/ % 1s small, end effects are present, and the f
very slow and the cavity Hm heated from the side. Cowley and
(21) studied the high Marangoni number "Thermocapillary analog
a buoyancy driven convection problem solved by Roberts (22).
we shall make some comparisons between our results for the
deflection of the surface and those of Sen and Davis Ambb.

The boundary conditions for Equations 1-3 which will be s
fied at x = 0 and the solid bottom are straightforward, but ti
for the free surface are rather complex and call for some dis-
cussion. At x = 0 we have a stagnation condition and at y =
i8 no slip and no penetration of fluld through the solid bottc

Therefore

u(x, d) = v(x, d) = 0, (0<x<£) and u(0, y) = 0, (0O<y<d)

The free surface i1s not flat in general and the boundary
ditions on this surface require careful consideration. The ki
matic condition at y = -h(x), where h(x) is the deflection frc
flat surface at y = 0, is

dh
v(x, -h) = - — u(x, -h)
dx

Equation 31la is the steady state form of the kinematic conditi
which also is used to describe wave motlion as discussed on pa;
of Levich's book, Physicochemical Hydrodynamics. One also mu:
equate the normal and tangential components of the forces 1in ¢
phase at the free surface. Since we consider a gas-liquid int
face, we neglect gas phase resistance due to its viscosity anc
include only the pressure it imposes on the interface on the ,
side. Therefore, at y = ~h(x) the tangential component of th:
stress tensor for the liquid phase is equal to the tangeantial
created by the change in surface tension with temperature in !
direction. Thus the tangential force balance at the interfac:
becomes

-y u o v B o
—— [ ) =+ =) - 2 (- =) s 2y
1+ h2 Iy ¥y x t +n2)



